Exercise 5

Find the linear approximation of the function $f(x)=\sqrt{1-x}$ at $a=0$ and use it to approximate the numbers $\sqrt{0.9}$ and $\sqrt{0.99}$. Illustrate by graphing f and the tangent line.

Solution

Start by finding the corresponding y-value to $x=0$.

$$
f(0)=\sqrt{1-0}=1
$$

Then find the slope of the tangent line to the function at $x=0$ by computing $f^{\prime}(x)$,

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x} \sqrt{1-x} \\
& =\frac{1}{2}(1-x)^{-1 / 2} \cdot \frac{d}{d x}(1-x) \\
& =\frac{1}{2 \sqrt{1-x}} \cdot(-1) \\
& =-\frac{1}{2 \sqrt{1-x}},
\end{aligned}
$$

and plugging in $x=0$.

$$
f^{\prime}(0)=-\frac{1}{2 \sqrt{1-0}}=-\frac{1}{2}
$$

Now use the point-slope formula to obtain the equation of the line going through $(0,1)$ with slope $-1 / 2$.

$$
\begin{gathered}
y-f(0)=f^{\prime}(0)(x-0) \\
y-1=-\frac{1}{2} x \\
y=-\frac{1}{2} x+1
\end{gathered}
$$

Therefore, the linearization of the function $f(x)$ at $a=0$ is

$$
L(x)=-\frac{1}{2} x+1 .
$$

Compare the function and its linearization for $\sqrt{0.9}=\sqrt{1-0.1}$.

$$
f(0.1)=\sqrt{0.9} \approx 0.948683 \quad L(0.1)=-\frac{1}{2}(0.1)+1=0.95
$$

Compare the function and its linearization for $\sqrt{0.99}=\sqrt{1-0.01}$.

$$
f(0.01)=\sqrt{0.99} \approx 0.994987 \quad L(0.01)=-\frac{1}{2}(0.01)+1=0.995
$$

Below is a plot of the function and the linearization at $a=0$ versus x.

